FPC Prototype in Humanized Way

Quick FPC, Rigid-flex PCB prototype and PCB Assembly

Flex PCB Blog
Reflow Soldering PCB Temperature Curve Explanation
What is FPC
Special attention points for flexible circuit wiring
Multilayer PCB Stack-up Basics | PCB Knowledge
PCB Protection: Potting or Conformal Coating? | PCB Knowledge
FPCway: Specialized manufacturer of flexible printed circuit boards and rigid-flexible printed circuits
Future Trends of Flexible Circuit Boards
Rigid-Flex PCB Stack-up for Impedance Controlled Designs
Control Impedance Between Rigid PCB and Flex PCB
Flex PCB Reliability and Bendability
Normal Flex PCB Specifications
Flex PCB Polyimide Coverlay and Solder Mask
Flex PCB Boards and Connectors
About RA Copper and ED Copper
Introduction of Flexible PCB
5 Tips For Designing Flexible PCB
Advantages of FPC (Flexible PCB)
Evolution of the Flex Printed Circuit Board
Benefits of Using Flex Circuit Boards
Why Rigid-Flex PCBs are Economical?
Flexible PCB vs Rigid PCB
Development of Flexible printed circuit board (FPC) market
Traditional Manufacture Engineering of FPC Substrate
Development Trend of FPC Board
Flex PCB and the Manufacturing
About Flex PCB design
About Flex PCB and Assembly
How to Ensure Flex PCB Design Success
How to Select the Appropriate FPC Materials?
The Differences In Rigid PCB, Flex PCB and Rigid-Flex PCB
Flex-Rigid PCB Design Guidelines
Beneficials for Polyimide Flex PCB Boards
About Stiffener on Flex PCB FPC circuit Boards
About ENIG and ENEPIG
PCB Surface Finish Comparison
Copper Thickness for FPC Boards
Interconnect Solutions for Flexible Printed Circuits and Etched Foil Heaters
Advantages and Disadvantages of Rigid-Flex PCB
About FPC Plating Process
About EMI shield design for Flex Printed Circuit Board
PCB Assembly Blog
How to solve the problem of PCB warping deformation after welding large copper bar?
About PCB Assembly
QFP and BGA and the Development Trend in PCB assembly
Why some components need be baked before reflow soldering
About Flex PCB Assembly
Manual Soldering in SMT Assembly Manufacturing Process
BGA Components and BGA Assembly
Quick Understanding for PCB Assembly Process
About SMT Assembly (Surface Mount Technology)
About THT Assembly (Through-Hole Technology)
About Reflow Soldering
About_Wave_Soldering
PCB Assembly Inspections and Tests
Panel Requirements for PCB Assembly
About SMT (Surface Mount Technology)
FPC Research Blog
Preparation of FPC based on ultrasonic spraying method_4_Experimental Results
Preparation of FPC based on ultrasonic spraying method_3_Experimental Procedure
Preparation of FPC based on ultrasonic spraying method_2_Experimental Platform and Principle
Preparation of FPC based on ultrasonic spraying method_1_abstract
Research on Layout Design Method of Ultra-thin FPC_4_Analysis of Layout Design Methods
Research on Layout Design Method of Ultra-thin FPC_3_Analysis of Layout Design Methods
Research on Layout Design Method of Ultra-thin FPC_2_Analysis of Layout Design Methods
Research on Layout Design Method of Ultra-thin FPC_1_introduction
Research progress on polyimide FPC_2_the field of FPC
Research progress on polyimide FPC_1_Introduction
Analysis of Vibration Characteristics of FPCBs _4_Summary
Analysis of Vibration Characteristics of FPCBs _3_Finite Element Analysis
Analysis of Vibration Characteristics of FPCBs _2_Theory of Vibration Analysis
Analysis of Vibration Characteristics of FPCBs Under Random Vibration_1_Introduction
Design Methods for FPCBs_5_Practical Application
Design Methods for FPCBs_4_Electrical Circuit Design and Examples
Design Methods for FPCBs_3_Structure Design Method and Examples
Design Methods for FPCBs_2_Component Selection Methodology and Examples.
Research on Design Methods for FPCBs
Application of MPW technique for FPCBs _4_Summary
Application of MPW technique for FPCBs_3_Experimental results
Application of MPW technique for FPCBs_2_Experimental setup
Application of MPW technique for FPCBs_1_Principle of MPW
Application of FPCB in PC motherboards_4_ Results and discussion
Application of FPCB in PC motherboards_3_ Numerical analysis
Application of FPCB in PC_2_ Experimentation
Application of FPCB in PC motherboards
A Bus Planning Algorithm for FPC Design _4_Experimental result
A Bus Planning Algorithm for FPC Design _3_Proposed Algorithm
A Bus Planning Algorithm for FPC Design _2_Preliminaries
A Bus Planning Algorithm for FPC Design _1_Introduction

Anyone involved within the printed circuit board (PCB) industry understand that PCBs have copper finishes on their surface. If they are left unprotected then the copper will oxidize and deteriorate, making the circuit board unusable. 

 

The surface finish forms a critical interface between the component and the PCB. The finish has two essential functions, to protect the exposed copper circuitry and to provide a solderable surface when assembling (soldering) the components to the printed circuit board. 

 

Hot Air Solder Leveling (HASL) was once the tried and true method of deliver consistent assembly results. However, the ever-increasing circuit complexity and component density has stretched the capabilities of even horizontal solder levelling systems to their limits. 

 

As component pitches became finer and a need for a thin coating became greater, HASL represented a process limitation for PCB manufacturers. As an alternative to HASL, alternative coatings have been around for several years now, both electrolytic and immersion processes. Listed below are some more common surface finishes used in PCB manufacturing.

 

HASL with lead or HASL lead free 

 

HASL is the predominant surface finish used in the industry. The process consists of immersing circuit boards in a molten pot of a tin/lead alloy and then removing the excess solder by using 'air knives', which blow hot air across the surface of the board. 

 

One of the unintended benefits of the HASL process is that it will expose the PCB to temperatures up to 265°C which will identify any potential delamination issues well before any expensive components are attached to the board. 

 

Advantages: 

 

Disadvantages: 

 

Immersion Tin 

 

According to IPC, the Association Connecting Electronics Industry, Immersion Tin (ISn) is a metallic finish deposited by a chemical displacement reaction that is applied directly over the basis metal of the circuit board, that is, copper. The ISn protects the underlying copper from oxidation over its intended shelf life. 

 

Copper and tin however have a strong affinity for one another. The diffusion of one metal into the other will occur inevitably, directly impacting the shelf life of the deposit and the performance of the finish. The negative effects of tin whiskers growth are well described in industry related literature and topics of several published papers.

 

Advantages: 

 

Disadvantages: 

 

OSP

 

OSP (Organic Solderability Preservative) or anti-tarnish preserves the copper surface from oxidation by applying a very thin protective layer of material over the exposed copper usually using a conveyorized process. 

 

It uses a water-based organic compound that selectively bonds to copper and provides an organometallic layer that protects the copper prior to soldering. It's also extremely green environmentally in comparison with the other common lead-free finishes, which suffer from either being more toxic or substantially higher energy consumption. 

 

Advantages: 

 

Disadvantages: 

 

Electroless Nickel Immersion Gold (ENIG) 

 

ENIG is a two layer metallic coating of 2-8 μin Au over 120-240 μin Ni. The Nickel is the barrier to the copper and is the surface to which the components are actually soldered to. The gold protects the nickel during storage and also provides the low contact resistance required for the thin gold deposits. ENIG is now arguably the most used finish in the PCB industry due the growth and implementation of the RoHs regulation. 

 

Advantages: 

 

Disadvantages: 

 

Electroless Nickel Electroless Palladium Immersion Gold (ENEPIG) 

 

ENEPIG, a relative newcomer to the circuit board world of finishes, first came on the market in the late 90s. This three-layer metallic coating of nickel, palladium, and gold provides an option like no others: it is bondable. ENEPIG’s first crack at a printed circuit board surface treatment fizzled with manufacturing due to its extreme high cost layer of palladium and low demand of use. 

 

The need for a separate manufacturing line was not receptive for these same reasons. Recently, ENEPIG has made a comeback as the potential to meet reliability, packaging needs, and RoHS standards are a plus with this finish. It is perfect for high frequency applications where spacing is limited.  

 

When compared to the other top four finishes, ENIG, Lead Free-HASL, immersion silver and OSP, ENEPIG outperforms all on the after-assembly corrosion level. 

 

Advantages: 

 

Disadvantages: 

 

Gold – Hard Gold 

 

Hard Electrolytic Gold consists of a layer of gold plated over a barrier coat of nickel. Hard gold is extremely durable, and is most commonly applied to high-wear areas such as edge connector fingers and keypads. 

 

Unlike ENIG, its thickness can vary by controlling the duration of the plating cycle, although the typical minimum values for fingers are 30 μin gold over 100 μin nickel for Class 1 and Class 2, 50 μin gold over 100 μin nickel for Class 3. 

 

Hard gold is not generally applied to solderable areas, because of its high cost and its relatively poor solderability. The maximum thickness that IPC considers to be solderable is 17.8 μin, so if this type of gold must be used on surfaces to be soldered, the recommended nominal thickness should be about 5-10 μin. 

 

Advantages: 

 

Disadvantages: 

 

Conclusion 

 

It is important to select the appropriate surface finish for your project by considering the various options while factoring in performance requirements and material costs. 

 

For an example, if you are looking for the lowest cost then Tin-Lead HASL might seem like a good choice, but it is not suitable for RoHS-compliant products. If your product does require RoHS, you might consider lead-free HASL. That is only if there are no fine pitch components, since LFHASL cannot be applied perfectly flat. If your design needs to be RoHS compliant and does use fine pitch components, then you'll need to select a flat, lead-free finish, such as Immersion Silver or ENIG. Bear in mind that doing so will necessitate the use of more costly high temperature laminate. 

 

Unsure of what you will need? Consult with a PCB fabricator prior to you making a selection. This will ensure that the combination of the surface finish and material will result in a high-yielding, cost-effective design that will perform as expected.

Contact us

  • Email: sales@fpcway.com
  • Tel: 086 18576671093
  • Skype: Downey_PCB-PCBA
  • Address: No.12, Shapuwei Industrial Road
  • Songgang Street, Baoan District, Shenzhen

About us

  • Based in Shenzhen China, FPCway is professional at Flex PCB,
    Rigid-flex PCB and PCB assembly services
  • Flex PCB compliant ISO9001, ISO14001, TS16949, UL, RoHS.
    PCB Assembly compliant ISO9001, IATF16949, IPC-A-610E.
  • Our aim is "Humanized way to make Flex PCB". Choose us,
    you will have the best flex PCB and assembly partner.

Certifications

© 2023-2033 FPCWAY All Rights Reserved