FPC Prototype in Humanized Way

Quick FPC, Rigid-flex PCB prototype and PCB Assembly

Flex PCB Blog
Reflow Soldering PCB Temperature Curve Explanation
What is FPC
Special attention points for flexible circuit wiring
Multilayer PCB Stack-up Basics | PCB Knowledge
PCB Protection: Potting or Conformal Coating? | PCB Knowledge
FPCway: Specialized manufacturer of flexible printed circuit boards and rigid-flexible printed circuits
Future Trends of Flexible Circuit Boards
Rigid-Flex PCB Stack-up for Impedance Controlled Designs
Control Impedance Between Rigid PCB and Flex PCB
Flex PCB Reliability and Bendability
Normal Flex PCB Specifications
Flex PCB Polyimide Coverlay and Solder Mask
Flex PCB Boards and Connectors
About RA Copper and ED Copper
Introduction of Flexible PCB
5 Tips For Designing Flexible PCB
Advantages of FPC (Flexible PCB)
Evolution of the Flex Printed Circuit Board
Benefits of Using Flex Circuit Boards
Why Rigid-Flex PCBs are Economical?
Flexible PCB vs Rigid PCB
Development of Flexible printed circuit board (FPC) market
Traditional Manufacture Engineering of FPC Substrate
Development Trend of FPC Board
Flex PCB and the Manufacturing
About Flex PCB design
About Flex PCB and Assembly
How to Ensure Flex PCB Design Success
How to Select the Appropriate FPC Materials?
The Differences In Rigid PCB, Flex PCB and Rigid-Flex PCB
Flex-Rigid PCB Design Guidelines
Beneficials for Polyimide Flex PCB Boards
About Stiffener on Flex PCB FPC circuit Boards
About ENIG and ENEPIG
PCB Surface Finish Comparison
Copper Thickness for FPC Boards
Interconnect Solutions for Flexible Printed Circuits and Etched Foil Heaters
Advantages and Disadvantages of Rigid-Flex PCB
About FPC Plating Process
About EMI shield design for Flex Printed Circuit Board
PCB Assembly Blog
How to solve the problem of PCB warping deformation after welding large copper bar?
About PCB Assembly
QFP and BGA and the Development Trend in PCB assembly
Why some components need be baked before reflow soldering
About Flex PCB Assembly
Manual Soldering in SMT Assembly Manufacturing Process
BGA Components and BGA Assembly
Quick Understanding for PCB Assembly Process
About SMT Assembly (Surface Mount Technology)
About THT Assembly (Through-Hole Technology)
About Reflow Soldering
About_Wave_Soldering
PCB Assembly Inspections and Tests
Panel Requirements for PCB Assembly
About SMT (Surface Mount Technology)
FPC Research Blog
Preparation of FPC based on ultrasonic spraying method_4_Experimental Results
Preparation of FPC based on ultrasonic spraying method_3_Experimental Procedure
Preparation of FPC based on ultrasonic spraying method_2_Experimental Platform and Principle
Preparation of FPC based on ultrasonic spraying method_1_abstract
Research on Layout Design Method of Ultra-thin FPC_4_Analysis of Layout Design Methods
Research on Layout Design Method of Ultra-thin FPC_3_Analysis of Layout Design Methods
Research on Layout Design Method of Ultra-thin FPC_2_Analysis of Layout Design Methods
Research on Layout Design Method of Ultra-thin FPC_1_introduction
Research progress on polyimide FPC_2_the field of FPC
Research progress on polyimide FPC_1_Introduction
Analysis of Vibration Characteristics of FPCBs _4_Summary
Analysis of Vibration Characteristics of FPCBs _3_Finite Element Analysis
Analysis of Vibration Characteristics of FPCBs _2_Theory of Vibration Analysis
Analysis of Vibration Characteristics of FPCBs Under Random Vibration_1_Introduction
Design Methods for FPCBs_5_Practical Application
Design Methods for FPCBs_4_Electrical Circuit Design and Examples
Design Methods for FPCBs_3_Structure Design Method and Examples
Design Methods for FPCBs_2_Component Selection Methodology and Examples.
Research on Design Methods for FPCBs
Application of MPW technique for FPCBs _4_Summary
Application of MPW technique for FPCBs_3_Experimental results
Application of MPW technique for FPCBs_2_Experimental setup
Application of MPW technique for FPCBs_1_Principle of MPW
Application of FPCB in PC motherboards_4_ Results and discussion
Application of FPCB in PC motherboards_3_ Numerical analysis
Application of FPCB in PC_2_ Experimentation
Application of FPCB in PC motherboards
A Bus Planning Algorithm for FPC Design _4_Experimental result
A Bus Planning Algorithm for FPC Design _3_Proposed Algorithm
A Bus Planning Algorithm for FPC Design _2_Preliminaries
A Bus Planning Algorithm for FPC Design _1_Introduction

Designing a flex printed circuit board requires a slightly different approach than rigid PCBs. While flex PCBs can provide major savings in manufacturing cost as well as reduced space consumption and lower weight compared with rigid, their design must be optimized for their materials and use cases. A well-designed flex PCB will be lightweight, durable, easy to install, and suitable for demanding applications such as wearable devices and satellites. Indeed, the physical advantages for flex is that it offers an improved resistance to vibrations and movement, and it is easier to prepare for harsh environments.

 

There are plenty of ways to ensure a high-quality flex PCB design. Let’s look at five things you should know going into your first attempt at flex PCB:

 

1) Understand bendability of your flex PCB


It is vital to know two things in relation to bend: how many times it will be bending, and what it can bend. The amount of times it can bend, or application, determines whether the board will be a static or dynamic board. A static board is considered bend-to-install, and will flex less than 100 times in its lifetime. A dynamic board’s design needs to be more robust in nature, as flexing will be done on a regular basis—and will need to withstand tens of thousands of bends.

 

Bend radius—the minimum amount of bendiness for the flex area—must be properly identified early in the design. This ensures your design can allow for the necessary number of bends without damaging the copper. The figure below will help determine how thick you can make your circuit. 

 

When laying out the bend areas, avoid 90-degree bends that cause high strain. Plated through-holes should be avoided in the bend area, conductors should be staggered in multilayered circuits (for greater effectiveness), and conductors smaller than 10 mils should be placed within the neutral bend axis where there is no tension or compression during flexing.

 

2) Know your flex PCB materials


Flex PCBs usually require looser outline tolerance than other boards. This is because their materials have less dimensional stability than rigid ones. Depending on the profile tolerance, you may also require a hard tool or laser cutting, which can be expensive.

 

Also, note that flex PCB materials may contain acrylic adhesives. Since these chemicals can become soft when heated, it is important to make your pads as large as possible. Using spurs, anchors, and/or teardrops in your design can help stabilize the outer layer and reduce stress. Multi-layer designs are also a way around adhesive issues. 

3) Keep an eye on flex trace routing


Circuitry layout makes or breaks a PCB. Going back to the bend radius, a large radius is preferable here to the sharp angles that shorten a board’s lifespan. Moreover, it is best to avoid I-beaming so as to minimize the stress that can thin out copper circuits.

 

Curved traces cause lower stress than angled ones. Traces should also be kept perpendicular to the overall bend and, if placed on a flex PCB with two or more layers, staggered on the top and bottom.

 

4) Place the flex layers in the center of the stack-up


For rigid-flex PCBs, Sierra processes the flex layer as a two-layer board, laminates it between the rigid layers, and mills it so the flex is visible. Putting flex layers on the inside of the stack-up provides protection from exposure to outer-layer plating. This placement also simplifies manufacturing and improves impedance and control in the flex area.

 

The flex layer can be etched away from the design as part of a separate process, allowing for more protection.

 

5) Mitigate risk in flex vias


It is possible for vias to crack or break peel flex PCB designs. To prevent them from doing so, make sure that vias are tear-dropped, that anchors and or tabs are added, and that the annular rings are as large as possible.

Contact us

  • Email: sales@fpcway.com
  • Tel: 086 18576671093
  • Skype: Downey_PCB-PCBA
  • Address: No.12, Shapuwei Industrial Road
  • Songgang Street, Baoan District, Shenzhen

About us

  • Based in Shenzhen China, FPCway is professional at Flex PCB,
    Rigid-flex PCB and PCB assembly services
  • Flex PCB compliant ISO9001, ISO14001, TS16949, UL, RoHS.
    PCB Assembly compliant ISO9001, IATF16949, IPC-A-610E.
  • Our aim is "Humanized way to make Flex PCB". Choose us,
    you will have the best flex PCB and assembly partner.

Certifications

© 2023-2033 FPCWAY All Rights Reserved