FPC Prototype in Humanized Way

Quick FPC, Rigid-flex PCB prototype and PCB Assembly

Flex PCB Blog
Reflow Soldering PCB Temperature Curve Explanation
What is FPC
Special attention points for flexible circuit wiring
Multilayer PCB Stack-up Basics | PCB Knowledge
PCB Protection: Potting or Conformal Coating? | PCB Knowledge
FPCway: Specialized manufacturer of flexible printed circuit boards and rigid-flexible printed circuits
Future Trends of Flexible Circuit Boards
Rigid-Flex PCB Stack-up for Impedance Controlled Designs
Control Impedance Between Rigid PCB and Flex PCB
Flex PCB Reliability and Bendability
Normal Flex PCB Specifications
Flex PCB Polyimide Coverlay and Solder Mask
Flex PCB Boards and Connectors
About RA Copper and ED Copper
Introduction of Flexible PCB
5 Tips For Designing Flexible PCB
Advantages of FPC (Flexible PCB)
Evolution of the Flex Printed Circuit Board
Benefits of Using Flex Circuit Boards
Why Rigid-Flex PCBs are Economical?
Flexible PCB vs Rigid PCB
Development of Flexible printed circuit board (FPC) market
Traditional Manufacture Engineering of FPC Substrate
Development Trend of FPC Board
Flex PCB and the Manufacturing
About Flex PCB design
About Flex PCB and Assembly
How to Ensure Flex PCB Design Success
How to Select the Appropriate FPC Materials?
The Differences In Rigid PCB, Flex PCB and Rigid-Flex PCB
Flex-Rigid PCB Design Guidelines
Beneficials for Polyimide Flex PCB Boards
About Stiffener on Flex PCB FPC circuit Boards
About ENIG and ENEPIG
PCB Surface Finish Comparison
Copper Thickness for FPC Boards
Interconnect Solutions for Flexible Printed Circuits and Etched Foil Heaters
Advantages and Disadvantages of Rigid-Flex PCB
About FPC Plating Process
About EMI shield design for Flex Printed Circuit Board
PCB Assembly Blog
How to solve the problem of PCB warping deformation after welding large copper bar?
About PCB Assembly
QFP and BGA and the Development Trend in PCB assembly
Why some components need be baked before reflow soldering
About Flex PCB Assembly
Manual Soldering in SMT Assembly Manufacturing Process
BGA Components and BGA Assembly
Quick Understanding for PCB Assembly Process
About SMT Assembly (Surface Mount Technology)
About THT Assembly (Through-Hole Technology)
About Reflow Soldering
About_Wave_Soldering
PCB Assembly Inspections and Tests
Panel Requirements for PCB Assembly
About SMT (Surface Mount Technology)
FPC Research Blog
Preparation of flexible printed circuits based on ultrasonic spraying method_2_Experimental Platform and Principle
Preparation of FPC based on ultrasonic spraying method_2_Experimental Platform and Principle
Preparation of flexible printed circuits based on ultrasonic spraying method_1_abstract
Research on Layout Design Method of Ultra-thin FPC_4_Analysis of Layout Design Methods
Research on Layout Design Method of Ultra-thin FPC_3_Analysis of Layout Design Methods
Research on Layout Design Method of Ultra-thin FPC_2_Analysis of Layout Design Methods
Research on Layout Design Method of Ultra-thin FPC_1_introduction
Research progress on polyimide FPC_2_the field of FPC
Research progress on polyimide FPC_1_Introduction
Analysis of Vibration Characteristics of FPCBs _4_Summary
Analysis of Vibration Characteristics of FPCBs _3_Finite Element Analysis
Analysis of Vibration Characteristics of FPCBs _2_Theory of Vibration Analysis
Analysis of Vibration Characteristics of FPCBs Under Random Vibration_1_Introduction
Design Methods for FPCBs_5_Practical Application
Design Methods for FPCBs_4_Electrical Circuit Design and Examples
Design Methods for FPCBs_3_Structure Design Method and Examples
Design Methods for FPCBs_2_Component Selection Methodology and Examples.
Research on Design Methods for FPCBs
Application of MPW technique for FPCBs _4_Summary
Application of MPW technique for FPCBs_3_Experimental results
Application of MPW technique for FPCBs_2_Experimental setup
Application of MPW technique for FPCBs_1_Principle of MPW
Application of FPCB in PC motherboards_4_ Results and discussion
Application of FPCB in PC motherboards_3_ Numerical analysis
Application of FPCB in PC_2_ Experimentation
Application of FPCB in PC motherboards
A Bus Planning Algorithm for FPC Design _4_Experimental result
A Bus Planning Algorithm for FPC Design _3_Proposed Algorithm
A Bus Planning Algorithm for FPC Design _2_Preliminaries
A Bus Planning Algorithm for FPC Design _1_Introduction

FPCway is also a professional PCB Assembly manufacturer for SMD Assembly and THT assembly in Shenzhen China. Own 8 professional SMT lines (JUKI, GKG, YAMAHA, KIC, etc.) and 2 professional THT/DIP lines, we could provide our customers the best service and best quality, all PCB assembly boards will pass strict visual inspection, AOI and X-Ray test (if have BGA) before shipping to customers.

 

Through-hole technology (tht), also spelled "thru-hole", refers to the mounting scheme used for electronic components that involves the use of leads on the components that are inserted into holes drilled in printed circuit boards (PCB) and soldered to pads on the opposite side either by manual assembly (hand placement) or by the use of automated insertion mount machines.

 

Although the advantages of SMD manufacturing are considerable, it is not possible to do without THT (through-hole technology) assembly when manufacturing electronics. Straight components with a high mechanical load, such as connectors, switches or power semiconductors, are still assembled on a PCB using through-hole technology. These components rarely exist as SMD versions. 

 

Our state-of-the-art electronics manufacturing use the advantages of SMD and THT assembly to ensure optimal production of your printed circuit board. Automated soldering processes allow us to solder wired components in a reflow oven (through-hole reflow or THR). This way, we shorten the usual THT assembly process and save on costs by eliminating manual or wave soldering, for example.

 

WE ALSO USE THE FOLLOWING SOLDERING METHODS IN THT MANUFACTURING: 

 

While through-hole mounting provides strong mechanical bonds when compared to SMT techniques, the additional drilling required makes the boards more expensive to produce. They also limit the available routing area for signal traces on layers immediately below the top layer on multilayer boards since the holes must pass through all layers to the opposite side. To that end, through-hole mounting techniques are now usually reserved for bulkier or heavier components such as electrolytic capacitors or semiconductors in larger packages such as the TO-220 that require the additional mounting strength, or for components such as plug connectors or electromechanical relays that require great strength in support. Design engineers often prefer the larger through-hole rather than surface mount parts when prototyping, because they can be easily used with breadboard sockets. However, high-speed or high-frequency designs may require SMT technology to minimize stray inductance and capacitance in wire leads, which would impair circuit function. Ultra-compact designs may also dictate SMT construction, even in the prototype phase of design.

Contact us

  • Email: sales@fpcway.com
  • Tel: 086 18576671093
  • Skype: Downey_PCB-PCBA
  • Address: No.12, Shapuwei Industrial Road
  • Songgang Street, Baoan District, Shenzhen

About us

  • Based in Shenzhen China, FPCway is professional at Flex PCB,
    Rigid-flex PCB and PCB assembly services
  • Flex PCB compliant ISO9001, ISO14001, TS16949, UL, RoHS.
    PCB Assembly compliant ISO9001, IATF16949, IPC-A-610E.
  • Our aim is "Humanized way to make Flex PCB". Choose us,
    you will have the best flex PCB and assembly partner.

Certifications

© 2023-2033 FPCWAY All Rights Reserved